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Abstract

The NAS parallel benchmarks are a set of applications that embody

the key computational and data-movement characteristics of typical pro-

cessing in computational aerodynamics. Five of these, the kernel bench-

marks, have been implemented on the PVM system, a software system

for network-based concurrent computing, with a view to determining the

efficacy of networked environments for high-performance computational

aerodynamics applications, and to experimentally investigate enhance-

ments to the software infrastructure that optimize communication perfor-

mance in such environments. We present results of porting and executing

the NPB kernels in three different cluster environments using low- to

medium-powered workstations on Ethernet and two types of FDDI net-

works. Our results indicate that mediocre to very good performance could

be obtained despite the communications intensive nature of the applica-

tions. In most cases, we were able to achieve performance levels within

an order of magnitude of a Cray Y/MP-1 on 8-workstation clusters via

optimizations to the PVM infrastructure alone, i.e. with little or no al-

gorithmic modifications. However, our results also indicate that further

improvements are possible, and that network based computing has the

potential to be a viable technology for high-performance scientific com-

puting.
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1 Introduction

Heterogeneous network-based concurrent computing is gaining widespread acceptance

as a methodology for high-performance scientific applications in a variety of disci-

plines. One such application area is computational fluid dynamics(CFD), an impor-

tant area within the domain of aerospace computing. The computational, memory,

and data handling requirements in CFD applications are of necessity very large, in

order to accurately simulate physical aerospace phenomena. For this reason, the

mainstay hardware platform has traditionally been vector supercomputers, primarily

multiprocessor Cray systems. Recently however, there has been an interest in the

use of parallel processing for CFD applications, motivated both by the sheer perfor-

mance offered by massively parallel processors (MPP's) as well as by their superior

cost-effectiveness. In addition to MPP's, networked environments are also often suit-

able for parallelism; while their communication capabilities are only a fraction of what

MPP's provide, they possess several other significant advantages. Among these are

high availability, excellent price-performance characteristics, heterogeneity that can

potentially be exploited by certain applications, and the existence of stable support

software and development tools.

The typical methodology for parallel or concurrent processing in networked en-
vironments is based on a software framework that executes on participating hosts

on a network, and emulates a "virtual parallel machine", essentially by implement-

ing various distributed algorithms over standard network protocols. Examples of

such software systems are PVM [5], Linda [6], Express [8], P4 and Parmacs [7], and

numerous other systems [9]. Applications access the virtual machine via system-

provided libraries that typically support process management, message exchange,

and synchronization facilities. Most environments are based on explicit parallel pro-

gramming using the message passing model; thus the programmer is responsible for

parallelizing the application as well as for partitioning and workload allocation, and

the interchange of data among processing elements. This mode of parallel/distributed

computing is currently at a stage where its effectiveness as a suitable technology for

high-performance computing is being evaluated.

In this paper, we report on such an exercise- the implementation and execution

of a set of CFD benchmark applications on virtual parallel machines using the PVM

software system. These applications are the five "kernel" benchmarks from the NAS

Parallel Benchmark suite [2], an algorithmically specified collection of programs that

are representative of real codes (or portions thereof) that are in production use in

the aerospace community. Despite being termed kernels, the five applications rigor-

ously exercise the processor, memory and, in the case of distributed-memory parallel

machines, the communications capacity of any given system. The work presented

in this paper was undertaken for several reasons. First, the kernels taken collec-

tively, exercise all aspects of the underlying software system (in this case, PVM), es-

pecially robustness, portability, message handling limitations, process management,

and synchronization. Second, the results of such an exercise would be valuable to

the computational aeroscience researchers in evaluating network environments and
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softwaresystemsfor their computing needs. Finally, from the point of view of dis-

tributed computing research, the kernels highlight critical issues and limitations in

the techniques used, and motivate the evolution of new strategies to address them.

In the remainder of the paper, we present an overview of the NAS benchmarks and

the PVM system, and report on preliminary porting and performance results in two

environments. We then describe enhancements to the PVM system that significantly

increases communication performance, and present revised results obtained in a third

network computing environment based on a high-speed fiber-optic switch. We con-

clude with some general remarks on our findings and outline ongoing and future

work.

2 The NAS Parallel Benchmarks

The NAS Parallel Benchmarks refer to a suite of applications devised by the Numeri-

cal Aerodynamic Simulation (NAS) Program of the National Air and Space Adminis-

tration (NASA) for the performance analysis of highly parallel computers. The NAS

Program is keenly interested in the highest level of computer performance, charged,

as they are, "to provide the Nation's aerospace research and development commu-

nity by the year 2000 a high-performance, operational computing system capable of

simulating an entire aerospace vehicle system within a computing time of one to sev-

eral hours" [3]. As there is no consensus as to the characteristics of general purpose

parallel benchmarks, the NAS benchmarks focuses on the class of applications of

most interest to the aerospace community. Therefore the NAS Parallel Benchmarks

are rooted in the problems of computational fluid dynamics and computational aero-

sciences. Nevertheless, in general terms, they are valuable in the evolution of parallel

processing technology, since they are rigorous and as close to "real" applications as

may be reasonably expected from a benchmarking suite.

The benchmark suite consists of five "kernels" and three simulated applications

which "mimic the computation and data movement characteristics of large scale com-

putational fluid dynamics (CFD) applications" [1]. These benchmarks are specified

only algorithmically, in [1], both to avoid the problems and difficulties associated with

conventional approaches to benchmarking highly parallel systems, as well as to allow

a certain amount of programming freedom and high level algorithmic refinement in

the porting process. The positive aspects of this philosophy are that it permits pro-

gramming freedom, optimization for specific machines or environments, and is not

dependent on the portability of a 'code-based" benchmark. On the negative side,

implementation for a given platform requires a great deal of effort; more importantly,

subjective factors v/z programmer qualifications and expertise, are introduced into

the results. Complete details of the benchmark specifications as well as substantial

descriptions may be found in [1, 2]; for the sake of completeness, we outline the five

kernels that were ported to PVM and used in the experiments reported in this paper.

In later sections, we provide additional algorithmic details to the extent necessary to

understand and interpret our work.
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2.1 The EP Kernel

Kernel EP is to execute 22s iterations of a loop in which a pair of random numbers

are generated and tested for whether Gaussian random deviates can be made from

them according to a specific scheme. The number of pairs of the Gaussians in 10

successive square annuli are tabulated. The pseudorandom number generator used

in this, and in all NAS benchmarks which call for random numbers, is of the linear

congruential recursion type. This kernel falls into the category of applications termed

"embarrassingly parallel", based on trivial partitionability of the problem, while in-

curring no data or functional dependencies, and requiring little or no communication

between processors. It is included in the NPB suite to establish the reference point

for peak performance on a given platform.

2.2 A 3D Multigrid Solver

Kernel MG adds substantial memory system and interconnection network demands

to floating point demands near the order of Kernel EP. Kernel MG is to execute

four iterations of the V-cycle multigrid algorithm to obtain an approximate solution

to the discrete Poisson problem V2u = v on a 256 × 25fi × 25fi grid with periodic

boundary conditions. This application rigorously exercises both short- and long-

distance communication, although the communication patterns are highly structured.

2.3 Conjugate Gradient

Kernel CG is to use the power and conjugate gradient methods to approximate the

smallest eigenvalue of a symmetric, positive definite, sparse matrix of order 14000

with a random pattern of nonzeros. Although CG is normally considered in the con-

text of solving linear systems, this particular benchmark version is a variant that

subsequently computes eigenvalues. The communication patterns in this kernel are

long-distance and unstructured - representative of typical unstructured grid compu-

tations.

2.4 3-D Fast Fourier Transform

This benchmark, termed Kernel FT, uses FFT's on a 256 x 256 x 128 complex array

to solve a 3-dimensional partial differential equation. Communication patterns in this

kernel are structured and long distance in nature, and this benchmark represents the

essence of many "spectral" codes or eddy turbulence simulations.

2.5 Integer Sort

Kernel IS is to perform 10 rankings of 223 (8388608) integer keys in the range [0, 219

(524288)). The keys are equally distributed in the local memories of the parallel ma-
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chine; that is, each processor is assigned the same number of keys. Communication

in this benchmark is frequent and relatively low-volume, and the pattern of commu-

nication is a fully connected graph. This kernel implements a sorting technique that

is important in "particle method" codes.

3 The PVM System

PVM (Parallel Virtual Machine) is a software system that enables explicit message-

passing concurrent computing on networks of heterogeneous machines. Details of

the PVM system, the programming model, and experiences with its use have been

reported in the literature, e.g. [5, 12, 11, 13]; in this section, we briefly outline some

salient aspects of the system.

3.1 PVM Computing model

The basic computing model in PVM, which has remained semantically unchanged

during its evolution, views applications as consisting of components, each represent-

ing a sub-algorithm; each component is an SPMD program, potentially manifested

as multiple instances, cooperating internally as well as with other component in-

stances via the supported communication and synchronization mechanisms. The

unit of concurrency in PVM is a process, and dependencies in the process flow graph

are implemented by embedding appropriate PVM primitives for process management

and synchronization within control flow constructs of the host programming language.

The implementation model, also unchanged from the original version, uses the no-

tion of a "host pool", a collection of interconnected computer systems that comprises

the virtual machine, on which daemon processes execute and cooperate to emulate

a concurrent computing system. Applications request and receive services from the

daemons; the facilities supported essentially fall into the categories of process man-

agement and virtual machine configuration, message passing, synchronization, and

miscellaneous status checking and housekeeping tasks.

3.2 The PVM Programming Interface

In order to use the PVM system, applications are written as cooperating sequential

programs, with embedded library calls to obtain services from the underlying dis-

tributed computing infrastructure. Typically, processes are organized as a master

and multiple slaves, or as SPMD programs where one process takes responsibility for

process initiation, collection of results, etc. Such a collection of cooperating processes

utilize a system-supplied identifier, usually a numeric quantity, as the basis for both

partitioning of the workload, and for addressing when sending and receiving messages.

This model is very similar to that found in traditional message-passing parallel sys-

tems such as the Intel MPP family - except that a more general process structure

is provided, and execution platforms may be heterogeneous. In the (common) case



of standaloneSPMD programs therefore, control and communication structures in a

PVM version are usually identical to its message-passing MPP counterpart.

3.3 PVM for High-Performance Computing

Much of the use of PVM (and other similar systems) has thus far been confined

to homogeneous networked environments, primarily workstation clusters. Moreover,

applications tend to be derived from corresponding MPP versions, since the two

models are quite similar. Given these circumstances, there are a number of factors

that must be considered, in terms of the levels of performance that may be reasonably

expected for high-performance scientific computing.

• Workstations vary widely in their processing power and memory capabilities;

further, as general purpose systems, they are subject to external competition

for resources.

• Even in dedicated clusters, various background activities by the operating sys-

tem, filesystem, and network software diminish the guarantee of obtaining a

constant level of resources.

• Shared media networks, two orders of magnitude lower in capacity than MPP

interconnects, are the norm in most cluster environments. Further, these are

subject to the same influences discussed above for "within host" resources.

• The absence of "correct" partitioning and load balancing schemes. In a hetero-

geneous system, optimal algorithms for workload allocation are mandatory for

achieving high performance - but as mentioned, most applications tend to be

implemented directly from a homogeneous MPP version.

These issues are highlighted and reinforced in the discussion in the remainder of

the paper, where our experiments with the NPB kernels on different virtual parallel

machines are described.

4 PVM Implementation of the NPB Kernels

The five NPB kernels have been ported to execute under the PVM system; an overview

of the kernels and our porting experiences are presented in this section. Several it-

erations were necessary because the release version (including the interface syntax

and semantics) of PVM underwent substantial changes during the course of our exer-

cises -- we present the implementation process in the context of version 3.2 (Version

3.2), whose programming interface is likely to remain stable. We defer discussions of

performance to the next section.
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4.1 Kernel EP

There are two main portions to this benchmark - the random number generator,

and the main processing loop which tests successive pairs of random numbers for

the property that Gaussian deviates can be built from them. Parallelization of the

problem is straightforward: each member in a group of processors works indepen-

dently on a subset of the random numbers and the annuli counts are communicated

at the end of processing. A simple front-end PVM process was designed to start the

"worker" processes, communicate to them their starting and ending indexes in the

loop, and receive their results at the end of computation. A static scheduling scheme

was used, based upon an initial "pilot computation" lasting 10 seconds, to determine

the relative CPU capacities of the machines involved.

4.2 Kernel MG

NAS specifies a discrete Poisson problem V_u = v with periodic boundary conditions

on a 256 × 256 × 256 grid. v is 0 at all coordinates except for 10 specific points which are

+1.0, and 10 specific points which are -1.0. The V-cycle multigrid algorithm involves

arithmetic on vectors u, v, and a work vector r. As the Intel version in Fortran77

was cumbersome to understand and port, a C version using multigrid recursion was

implemented for PVM.

In multigrid recursion, the vectors that are operated upon "shrink" in each level

of recursion by 2 in each dimension; that is, from a 256 × 256 × 256 volume to a

2 × 2 × 2 volume. As the recursion returns the size of the vectors expand back to

256 x 256 x 256. The arithmetic performed are 27-point operations, in which a point,

for example, in u is updated by arithmetic on the point in r with the same coordinates

plus on the 26 points in r which differ by one unit in all combinations of one, two,

and three indexes.

Therefore any scheme to data partition this problem, whether in one dimension

or all three, will involve operations at border regions where a processor must "touch"

the points which have been assigned to a neighboring processor. Two schemes are

typically used in this type of parallel problem: keeping a neighboring processor's

border points "in shadow" along with a scheme for updating them wholesale before

they go out of date; or requesting the points on demand. The former scheme was

chosen for our implementation. Also, we chose to data partition this problem in only

one dimension, such that processor communication fits the ring topology. Figure 1

illustrates the arrangement of processors and the communication pattern for the four

processor case.

There is substantial communication in this kernel between neighboring processors,

because they must repeatedly communicate the values of vectors at border regions as

they change. Message sizes are larger toward the top of the recursion. For example

in the first communication, processor p sends the 258 × 258 (there is periodicity in all

dimensions) double precision reals which are the "top" of its slice of the problem to
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Figure 1: Kernel MG processor topology and communication pattern, four processor

example

processor p + 1, and processor p + 1 sends the 258 x 258 double precision reals which

are the "bottom" of its slice of the problem to processor p. The similar exchange

occurs between processors p and p- 1. Due to the periodicity, processors assigned

partitions at top and bottom of the region also communicate as if their regions were

physically neighboring. Total size of the communication just described, i.e. one of

several border communications at the top of the recursion in each of the four multigrid

iterations: over 4MB for a four processor set, over 8MB for an eight processor set,

etc.

The most difficult aspect of the parallel implementation of this benchmark is that

depending on the number of processors, near the bottom of the multigrid recursion

there may be "too many" processors for the size of the vectors being worked on. A

scheme where processors "leave" the computation at the lower levels of recursion and

"rejoin" at the appropriate return point was implemented to overcome this obstacle.

4.3 Kernel CG

Kernel CG is to approximate the smallest eigenvalue of a symmetric positive definite

sparse matrix A of order 14000. Ten iterations of the power method are employed

to approximate the smallest eigenvalue; in each iteration of the power method, 25

iterations of the conjugate gradient method are used to solve the linear system Az -

x. A is generated by an NAS-supplied Fortran routine makea. To ensure that the

correct matrix was used, and because of time and expertise limitations, the m_kea

subroutine was inherited with few modifications from the Intel version, which resulted

in constraining our experiments to virtual machines with n 2 processes. The remainder

of the implementation consisted of rewriting several sections of the code, especially
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with regard to global communication primitives that are required to be emulated in

PVM.

The primary design issue in Kernel CG is how to store the various work vectors

used in the power and conjugate gradient methods. The operations on these vectors

are two dot products, three vector-vector additions, and one matrix-vector multiply

for each of the 25 conjugate gradient iterations in each of the 10 power method

iterations. The NAS choice is to divide a vector into as many pieces as there are

rows of processors (the pieces are either of equal size if the number of processor rows

evenly divides 14000, or are of very nearly equal size), with each processor on a row

holding an identical copy of that piece of the vector, as shown in figure 2.

pro_ 0

pro¢ :_

proc 2

i i

proc 5 proc 8

a vector

1114117

.,lt,JL,..
• -lf'l r'

! !

21151 IS

-tt*--

£dentlcal copies

of vector piece

----JtJ

Figure 2: Matrix and vector organization in Kernel CG, nine processor case

Dot products are done in parallel: each processor on a row is assigned computation

on a portion 1/P,.o,,, of the vectors in the dot product, with summation done by

processor 0. Vector-vector additions are not done in parallel within a row because

this would clearly incur communication costs which outweigh the overhead of each

processor on a row performing the identical addition.

It is the scheme for performing the matrix-vector multiplication q = Ap where

efficiency is most crucial. Consider processor 2 in figure 2. It does not have the correct

portion of the vector for its share of the matrix-vector multiplication; it needs the

portion stored by any of the processors on the first row. Similarly, processor 6 also has

the wrong vector portion for the matrix-vector multiply: it needs the portion stored

by any of the processors on the third row. Therefore, before the matrix-multiplication

can take place, the communication illustrated in figure 3 is required.

After the matrix-vector multiply by subblocks, processors on a column must sum

their resultant vectors. But if this were done, then processors on a row would no

longer have identical copies of that row's assigned portion of q. NAS takes advantage

of the symmetry of A and sums the resultant vector along the row instead (figure 4).

The distribution of the vector p and the summing of the resultant vector q add

up (in the 10x25 matrix-vector multiplications) to a total 130MB of communication
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Figure 3: Communication in Kernel CG, nine processor case, before the matrix-vector

multiply

I01L31161
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Figure 4: Kernel CG, nine processor case, sum of resultant vector along rows

in the four processor case, 250MB in the nine processor case, and 370MB in the 16

processor case.

4.4 Kernel IS

This benchmark performs 10 distributed rankings of 223 (8388608) integer keys in

the range [0, 2TM (524288)). The keys are equally distributed in the local memories

of the parallel machine; that is, each processor is assigned the same number of keys

(except for one processor which may have slightly fewer keys due to uneven division

of N_o_ into 223). The values of only two keys are changed between iterations, but
no knowledge gained about the sequence of the keys in one iteration may be used in

the next.

As the range of key values is 16 times smaller than the number of keys, and

because the keys are generated by the linear congruential recursion random number

generator which tends to generate more numbers in the middle of its range, it can be

expected that the key values will have an uneven distribution within the key range.

There may be 0 of one number, and 100 or more of another number in the specified
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range. Therefore if our implementation strategy is based on assigning each processor

a range of keys to rank, load balancing must be part of an optimal solution. NAS

explicitly regulates the movement of the keys among processing elements; essentially,

they may be duplicated but not removed from their initial placement, and the final

sort at the conclusion of the 10 rankings must be done from the original mapping of

keys to memory.

The Intel version of this benchmark was used to derive a PVM implementation,

even though the work allocation assumes identically powered processors - incorrect

in heterogeneous networks. The NAS strategy for performing the distributed ranking

is as follows. We illustrate a four processor example, with data structure names

depicted in figure 5. In the context of Kernel IS discussion in this and all other

later chapters, "M" means 1024 x 1024. Each processor begins with 2M keys in

the range [0, 1/2M) in the keys array. The goal is to fill in the ranks array with

the global rank of each key. First, each processor calculates its distribution of key

values by incrementing distribution[i] for each occurrence of key value i in the

keys array. Each processor sends its distribution array to the root processor. The

root processor sums these local distributions to calculate a global distribution of key

values, and uses this to assign a range of key values--as balanced as possible by

number of keys having values in that range---to each processor. These are the key

values which a processor will be responsible for ranking. All ranges are communicated

to all processors. Each processor then enters a loop where for each other processor

in the processor set it packs a buffer of its keys that are assigned to that processor

(packed_keys), packs each key's index in its sequence of keys (packed_indexes), and

sends those arrays to the processor assigned to rank on that range.

rink 8M keys in the muse [0,1/2M ) '_Vl"dmotes I024x I024

key.Fl

d_.m'bu_ooD

[ startwith 2M keys in the rinse [0. I/2M)

[ ] ht_mmylr, eystmthisptocbykeyvahte

2M ires- 8MB

2Mires - 8MB

I/2M shorts-lIMB

md indexes to the proce_

mtlloced, _g. to I/2M ires - 2MB

_ av& to I/2M ira- 2MB

ioaal_k_k_s[][ _0minsittder_t_It_J_umn ] tmlk_ed.s_t&to2Mit_-SMB

Figure 5: Kernel IS data structures, four processor example

Each processor receives incoming keys and indexes into the keys_to_rank and

1ocal_£ndexes arrays. The number ofincoming keys each processor receivesisbroad-

cast to allprocessors,so that each processor knows how many keys there are in each
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range of key values, and therefore where to begin assigning rank numbers. Each pro-

cessor ranks approximately the same number of keys, give or take a small number

due to a non-perfect breaking points in the distribution. A simple bucket rank is used

to rank the keys, using the bucket array. On conclusion of the bucket ranking, each

processor communicates the appropriate portions of the rank and local_indexes

array to the native processors.

The communication required in this distributed ranking algorithm is extreme.

Each processor sends key values and indexes for approximately (Nproco - 1)/Nnro_ of

its keys, and receives that many ranks and indexes back after the distributed ranking.

This algorithm is clearly better suited to shared memory multiprocessors than dis-

tributed memory multicomputers. It is expected that the computation-intensive code

executes in very much less time than the communications code, to the extent that on

a distributed memory machine this kernel essentially reduces to a communications-

system benchmark. In an attempt to reduce the communications volume in this

application, we also implemented a version of Kernel IS that avoids sending indexes

as the expense of additional memory and processing.

4.5 Kernel FT

The Kernel FT solves the discrete form of the PDE

Ou(x,t) _ aV2u(z,t), x _ RS,u _ C with initial values u(z,O) = Uo(X)
Ot

using the Discrete Fourier Transform. After 3-D Fourier transformation of each side,

this equation becomes

Ov(z,Z) _ _4a_21zlZv(z,t ) with the initial solution v(z,O) = Vo(Z)
0t

where Vo(Z) is the 3-D Fourier transform of uo(z). The solution to this equation is

= o) =

where v(z, t) is obtained as the inverse 3-D Fourier transform of v. The above is

also true for the discrete form of the original PDE when the 3-D Discrete Fourier

Transform (DFT) is applied. The serial version of Kernel FT first generates an initial

nl × n2 × n3 array of complex numbers, U(j,k,l),O < j < rtl,0 < k < n2,0 < I < rt3

initialized with values from a pseudorandom number generator. Then 3-D DFT of

U, called V, is computed using a 3-D FFT. Finally, for each t E [1,6] Wj,k,t(t) =

e-4_2a_+_+/21tVj,k,i is computed, where _ is defined as j for 0 < j < nl/2 and j - rtl

for nl/2 < j < nl and k and 7 similarly defined with rt2 and rts. The inverse DFT is

then applied to obtain the solution array Xj,k,t.

The PVM implementation on np processors organizes the nl × n2 × n3 array as

n3 nl × rt2 dimensional arrays, with each processor responsible for n3/rtp of these

arrays. The 3-D DFT is implemented as 3 sweeps with a 1-D FFT routine, one in
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each of the directions j, k, and I and the results are multiplied to form the 3-D DFT.

The sweeps in the j and k directions can be done on the data initially assigned to

each processor but for the sweep in the/-direction the array must first be transposed,

involving communication as shown in Figure 6.

MO

MI

M2

Prov3

Figure 6: Kernel FT partitioning/communication, four processor example

The PVM implementation of the 3-D DFT requires two array transposes; there-

fore, the total communication volume is 2nln2n3(np -- 1)/rip complex numbers sent

and received. For the 256 x 256 x 128 problem on 8 nodes the communication volume

for one 3-D DFT is 224 MByte (28 MByte / node), totalling 1568 MB for 6 timesteps.

The memory requirement for this problem size is 49 MB for each of the 8 processes.

5 Preliminary Experiments

In the previous section, we have described the parallelization aspects of the five NPB

kernels and outlined the structure of the PVM implementation of each. The commu-

nication structure, approximate communication volume, and memory requirements
for each kernel have also been described. In this section we discuss the results of

our performance experiments with these five kernels in three different PVM environ-

ments. The release version (3.2) of the PVM software, was used, and the default

"daemon-based _ communication scheme was selected. In the next section we de-

scribe a significant performance enhancement to the PVM communications scheme 1,

and present updated results.

We wish to emphasize that the results reported herein are for unoptimized im-

plementations of the NPB kernels - neither processor/memory optimizations for the

1Since the time of this exercise, the release version of PVM (3.2.6) has also incorporated a fast
communication scheme
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specificmachinesinvolved nor partitioning and schedulingoptimizations believedto
be essentialfor efficient heterogeneousexecutionwere incorporated. A few changes
that do have an impact on performancewere incorporated, and theseare described
later, but by and large, the structure of the PVM implementationsare basedupon
the correspondingIntel versionsdistributed by NAS.

5.1 Testbed Environments

The set of benchmark exercises discussed in this paper are unconventional, in the

sense that they are not aimed at measuring performance of a specific machine, but

rather of a methodology, viz network computing. In practical terms, this measures

the effectiveness of the software infrastructure (PVM) and the particular network

environment on which the experiments are conducted. In order to obtain an under-

standing of the effect of different hardware platforms while utilizing the same software

system, we conducted our benchmark experiments on three environments, each with

its unique characteristics. While these were selected primarily on the basis of avail-

ability, they do nevertheless represent major classes of cluster platforms, especially

with respect to the communications network. They are outlined below, with an in-

dication of their throughput and latency (process-to-process time, including PVM

overhead, for a zero length message).

Low-end workstations on low-speed shared medium networks: This environment

consists of 16 diskless Sun SSI+ workstations, each with 16 MB of memory and

32 MB of virtual memory(swap space), at the Emory University Parallel Pro-

cessing Lab. They are isolated from the remainder of the department/campus

network, and it is possible to use them in dedicated mode - thus achieving

a reasonably well controlled environment, where the only external influences

are background OS and network activities. These machines are connected by

10Mbps Ethernet on which the maximum achievable throughput is about 1000

KB/s, and the minimal latency is of the order of 2 milliseconds.

Medium-performance workstations on high-speed shared networks: This envi-

ronment consists of seven IBM RS/6000 model 560 computers, and one RS/6000

model 320 computer, each with 32 MB of memory, and 64 MB of swap space,

connected by FDDI. FDDI is an optical token-ring network that theoretically

offers 100 Mbps, but because it is a shared-ring topology, achievable throughput

is usually substantially lower. Minimal latencies are of the order of 1 millisec-

ond with IBM RS/6000 model 560's. This platform was made available to us

by the Utah Supercomputing Institute, and is subject to external loads as well

as periods of unavailability.

Medium-performance workstations on high-speed switched medium networks:

Figure 7 shows the organization of a high performance heterogeneous computing

testbed (termed HEAT) that has recently been installed at Sandia National

Labs to which we have been given access.
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Figure 7: Sandia Labs Heat Testbed

Although the HEAT has high-end workstations, only the medium powered SGI

R4000 workstations were used in our experiments, both because of their direct

interconnection via the switch, and due to some instabilities and configuration

factors on the other machines. These SGI workstations are configured with

64 MB of memory and 128 MB of swap space; minimal message latency is

about 1 millisecond. The switch, it is believed, is capable of 100 Mbps across

11 simultaneous connections. While the HEAT testbed was not available in

dedicated mode, it was possible to access it at times of low external loads.

5.2 Performance Results

In this section we present performance results for the five kernel benchmarks on

each of the three testbeds, using an unmodified version of PVM version 3.2. The

experiments were conducted during idle periods, with background CPU and network

loads estimated at 5---10%, although the environments were not controlled. We

present the results in tabular form, specifying the total elapsed time in seconds for

each platform and, where appropriate, the total communication volume, the time for

communication related activities alone, and the total number of messages exchanged.

Also shown for comparison in each table are the reported times on a single processor

of the Cray Y-MP, and those for the Intel iPSC/860 hypercube. These latter results

were obtained from a recent NAS report [4], and represent the best, optimized, times

available as of the time of writing of that report. We emphasize again that the PVM

results are for unoptimized versions, except for a few gross changes described in the

previous section. In all cases, native Fortran and/or C compilers were used with only

the "-O2" optimization flag.
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Platform Time
(secs)

16 SSI+ Enet 1603

8 RS6000 FDDI 342

8 SGI Gswitch 446

Cray Y-MP/1 126

i860/32 102

i860/64 51

i860/128 26

Table 1: Kernel EP on native PVM

5.2.1 Performance of Kernel EP

The Kernel EP benchmark was executed on all three environments for the "full"

problem size; the version that was run includes an initial 10-second pilot computa-

tion to determine processor capacities on the basis of which workload is allocated.

Table 1 lists the observed timings. While these results are as expected, two facts

are noteworthy. The first is that in the absence of communication, clusters of eight

workstations are capable of delivering a third of Cray Y-MP/1 performance. The

other point (not explicit in the table), is that despite a dedicated environment and

the use of a "one-time dynamic" load-balancing scheme, load imbalances of the order

of 10-15% were observed in all environments. As far as we were aware, the envi-

ronments were "dedicated"; therefore, background operating system activity and the

nice policy are the only explanations for this behavior.

5.2.2 Performance of Kernel MG

On the SSI+ duster, owing to memory limitations, we were only able to execute a

reduced version of MG that uses a 128 x 128 x 128 grid. It was possible to execute

the full-sized problem on the other two environments. Two small modifications were

attempted for Kernel MG. The first was to change the order of message passing to per-

mit greater overlap of computation and communication - performance improvement

of the order of only 6-9% was obtained by doing so. The second was to implement

a token scheme for the shared Ethemet to reduce contention. This scheme dramati-

cally reduced the number of Ethernet collisions (from 54% to 16% of packets output),

but did not improve overall execution time - we conjecture that this is due to the

relatively large overhead of the token passing scheme itself. The results of MG perfor-

mance without algorithmic alterations, but including the overlap scheme, are shown

in table 2.

The results shown in 2 indicate that 8-processor clusters perform more than an

order of magnitude slower than a single processor of the Cray Y-MP, and 25 times
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Platform Time
( cs)

16 SSI+ Enet 198"

8 RS6000 FDDI 229

8 SGI Gswitch 264

Comm. Comm. Number

Volume Time(secs) of msgs

96MB 154 2704

192MB 162 1808

192MB 112 1808

Cray Y-MP/h 22 secs; i860/128 : 8.6 secs

* Reduced problem size (128 × 128 × 128)

Table 2: Kernel MG on native PVM

Platform Time

(secs)
16 SSI+ Enet 701

4 RS6000 FDDI 285

9 SGI Gswitch 130

Comm. Comm. Number

Volume Time(secs) of msgs

370MB 480 37920

130MB 192 7116

250MB 101 19756

Cray Y-MP/h 12 secs; i860/128:7.0 secs

Table 3: Kernel CG on native PVM

slower than a 128-processor Intel hypercube. The table also indicates that communi-

cation time accounts for upto two-thirds of the execution time.

5.2.3 Performance of Kernel CG

Table 3 shows performance results for the conjugate gradient benchmark under PVM.

As previously mentioned, we encountered some difficulty in porting this application

from the serial and Intel versions of the NAS-supplied code, which resulted in a

probably inefficient implementation- but executes on n _ processors (rather than on

2'_ processors).

With reference to table 3, it can be seen that the parallel CG algorithm results

in increased communication volume with an increase in the number of processors -

a serious drawback especially for shared-network based concurrent computing. How-

ever, a small number of powerful workstations works well, as the timings for the

4-processor FDDI and 9-processor switched networks indicate. Once again, commu-

nication times dominate the overall execution times, accounting for 77% of the time

in the 9-processor switched network case. As with Kernel MG, the fastest PVM

configuration executes about an order of magnitude slower than a Cray Y/MP-1.
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Platform Time
(secs)

16 SSI+ Enet 607 °

8 RS6000 FDDI 674

8 SGI (]switch 770

Comm.

Volume

Comm.

Time(secs)

Number

of msgs

150 MB 595 10115

560 MB 610 2491

560 MB 720 2491

Cray Y-MP/I: 11 secs; i860/32:26 secs

i860/64:17 secs; i860/128:14 secs

* Reduced problem size (221 keys in the range 0 to 2 TM)

Table 4: Kernel IS on native PVM

5.2.4 Performance of Kernel IS

This benchmark is particularly ill-suited for networked environments, involving large

communication volume and frequency, and minimal computation. As a result, IS

performs poorly in all three environments when using the daemon-based PVM com-

munication scheme, as shown in Table 4. In fact, communication time comprises over

90% of the overall execution time in all cases! Owing to memory limitations, the

SSI+ network was only used for a reduced size version of the problem. Results are

shown for the version of IS incorporating one modification, viz. avoiding the exchange

of array indices at the expense of relatively small extra memory and processing.

5.2.5 Performance of Kernel FT

The FT kernel is most demanding in terms of communication volume. However, this

communication is in the form of large messages of relatively low frequency - a char-

acteristic that contributes to achieving high bandwidth. Memory limitations again

constrained our ability to run the full problem size on the 16 SSI+ environment on

which a reduced problem had to suffice. The parallel PVM version of FT was derived

directly from the Intel version, with some portions obtained from the sequential NAS

version. Results are shown in Table 5 - but exhibit rather disappointing performance,

possibly indicating that even bandwidth-limited applications are unable to perform

well under the unmodified PVM system.

5.3 General Comments

The results presented in the previous subsection are mediocre at best. However,

notwithstanding the general reasons of communication bottlenecks, PVM overheads,

and timeshared machines for this poor showing, we should still expect to see somewhat

better performance. Although too simplistic, we may use some crude approximations

to determine the extent of the performance deterioration due to communication in

the following manner. For example, in the MG benchmark, 192 MB of data are
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Platform Time

(secs)
16 SSI+ Enet 717"

8 RS6000 FDDI 645

8 SGI Gswitch 1070

Comm. Comm. Number

Volume Time(secs) of msgs

420MB 502 3450

1500MB 395 826

1500MB 516 826

Cray Y-MP/I: 29; i860/128:10 secs

* Reduced problem size (128 x 128 x 128)

Table 5: Kernel FT on native PVM

communicated in 162 seconds on shared FDDI and in 112 seconds on switched FDDI.

These measurements suggest that an average throughput of 1.2 and 1.7 MB/sec on the

two networks respectively - 10_ and 15% of the rated capacities. Even accounting

for the fact that rated network capacities are hard to achieve, this appears to be

abysmally low.

6 Optimizing Message Passing

Preliminary benchmarking of the NAS kernels on PVM, as described in the previ-

ous section, suggested that only a fraction of available network capacity was being

attained, thereby resulting in poor to mediocre performance of these benchmarks

in cluster environments. As this project is aimed at evaluating and enhancing the

software infrastructure to obtain better performance (as opposed to algorithm modi-

fications or compiler optimizations), we focused our efforts on techniques to improve

PVM communication performance.

Message passing in the PVM system is a three-stage process by default, involving

"store-and-forward" by the daemons. This scheme has its advantages in terms of

scalability and statelessness, but performs poorly. In an attempt to overcome this

drawback, we have designed and implemented an enhanced communication scheme for

PVM; in this section, we describe this mechanism and present updated performance

results 2.

6.1 Fsend and Frecv

From the programming interface point of view, the enhanced message passing scheme,

accessible via the pvm..fsend () and pvm..frecv () calls, permit the direct transfer of

user program data without requiring buffer initialization and packing. However, data

conversion can still be included if communicating between different architectures,

2As mentioned, a later version of PVM (3.2.6) supports similar functionality and performance
via a toggled option. Thus the results presented may also be obtained using the release version of
the PVM software

19



Platform Throughput kB/sec)
1 byte 100bytes 10kB 1MB

SSI+ Ethernet
Daemon 0.06 12.88 263.41 358.48
Fsend 0.49 81.79 902.42 1003.87

TTCP 0.65 130.45 965.04 1125.24

RS6000 FDDI

Daemon 0.09 20.67 374.04 711,58

Fsend 0.82 112.79 1568.40 2285.89

TTCP 1.85 325.40 2573.00 2918.20

SGI Gigaswitch

Daemon 0.21 38.92 406.04 483.58

Fsend 1.11 102.79 3400.42 9550.87

TTCP 2.15 500.40 9203.00 9624.20

Table 6: Point-to-point communication bandwidth

thus retaining data heterogeneity but not heterogeneity of message content. The

pvm..fsend() and pvm_frecv() mechanisms are built on standard TCP internet pro-

tocols and are manifested as a separate but non-intrusive library in the PVM system.

This library is tailored and optimized for each host operating system, in a manner

that achieves near-optimal performance for a given host environment. The limita-

tions on scalability remain, but currently, this is of the order of 64 hosts and above,

and we are working on enhancements that would eliminate this limitation altogether.

The pvm.:fsend() and pvm_frecv() library was implemented and tested on a va-

riety of environments and networks. In particular, it has been evaluated on the plat-

forms described in this paper, both using simple communications testing programs,

as well as end-applications. Table 6 indicate the performance of this communications

scheme for simple point-to-point data transfer, for a variety of message sizes. Also

shown for reference, are the corresponding values for dameon-based PVM communi-

cation, and for a standalone benchmarking program, v/z. TTCP.

From the table it can be observed that the enhanced communication scheme deliv-

ers throughputs several times as much as the daemon based communication. However,

it also indicates that except for large messages, even the enhanced communication

mechanism delivers only a fraction of the throughput actually attainable by software

as indicated by the reference TTCP numbers which, incidentally, is of the order of

70-95% of the theoretical maxima. This exercise of evaluating communications per-

formance and the development of an experimental enhanced communication scheme

was productive for two important reasons. First, it has resulted in a robust and ef-

fective auxiliary library that performs, in some cases, several times better than the

native PVM system. Second, it has highlighted the importance and benefits of tuning

communications software both for specific machines and their operating systems, as

2O



Platform Time Comm. Comm. Number Idle

(sees) Volume Time(sees) of msgs Time(sees)

16 SSI+ Enet 138" (198") 96 MB 85 (154) 2704 48

8 RS6000 FDDI 110 (229) 192 MB 52 (162) 1808 30

8 SGI Gswitch 168 (264) 192 MB 81 (112) 1808 50

Cray Y-MP/h 22 sees; i860/128 : 8.6 secs

* Reduced problem size (128 x 128 x 128)

Table 7: Kernel MG on enhanced PVM

well as for different types of local area networks.

6.2 Updated Performance Results

In this section we report on performance measurements obtained by re-executing the

NPB kernels on PVM, using the enhanced communications scheme 3. In the tables,

we also include the total time and communication time for the previous experiments

(in parentheses) for convenient comparison. We also include an additional measure

in the following set, viz the "maximum idle time". This is the largest idle time

accumulated by any PVM process in the collection; idle time refers to the time that

a process is blocked on receives, i.e. waiting for incoming messages that were a

precondition to performing further computation. This metric approximately reflects

the load imbalance in a given application algorithm or the parallelization thereof.

6.2.1 Performance of Kernel MG

It may be seen by comparing table 2 and 7 (or the new and old (parenthesized)

times in columns 2 and 4) that the enhanced communication mechanism resulted

in an improvement of 50% for the SSI+ platform, 100% for the RS6000's, and 60%

for the SGI's. In two environments, all the gains were due to communication time,

which was reduced by 50% to 300%. Focusing on the idle time column, it may be

seen that unproductive time spent in blocked receives are a significant fraction of the

total communication times, indicating that further optimizations may be possible by

implementing a better load balancing scheme, or by eliminating serial bottlenecks.

6.2.2 Performance of Kernel CG

The improvements in performance for Kernel CG obtained by using enhanced

PVM communications are not as dramatic as in MG for the SSI-t- platform, and of the

order of 35% for the other two platforms. However, communication times in the two

FDDI environments are reduced by a factor of two, and as the idle time column shows,

3EP results are unchanged and are therefore not reported
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Platform Time Comm.

(secs) Volume

16 SSI+ Enet 605 (701) 370 MB

4 RS6000 FDDI 203 (285) 130 MB

Comm.

Time(secs)

404 (480)

101(192

Number

of msgs

37920

7116

Idle

Time(secs)

390

88

9 SGI Gswitch 108 (130) 250 MB 46 (101) 19756 42

Cray Y-MP/h 12 secs; i860/128:7.0 secs

Table 8: Kernel CG on enhanced PVM

Platform

16 SSI+ Enet

8 RS6000 FDDI

8 SGI Gswitch

Time

(secs)

398" (607")

318 (674)

258(77o)

Comm.

Volume

150MB

560MB

560MB

Comm.

Time(secs)

375 (595)

171 (610)

140 (720)

Number

of msgs

10115

2491

2491

Cray Y-MP/h 11 secs; i860/32:26 secs

i860/64:17 secs; i860/128:14 secs

Idle

Time(secs)

370

129

105

* Reduced problem size (221 keys in the range 0 to 2 TM)

Table 9: Kernel IS on enhanced PVM

potential for further reduction exists. Another interesting observation concerns the

number of messages transmitted in each case in relation to the total communication

volume. For example, in the 9 processor SGI platform, CG exchanges 19756 messages

for a total volume of 250 MB, while MG exchanges only 1808 messages for 192

MB. The enhanced communication mechanism attempts to optimize performance for

small messages as well, thereby achieving performance gains even for latency-limited

applications. Notwithstanding these improved overall results, idle column with times

of the order of 60% to 90% of total communications times in CG is the highlight of

this table.

6.2.3 Performance of Kernel IS

Kernel IS shows a uniform twofold (or better) performance with the enhanced

communication scheme, as compared to the native PVM measurements. This im-

provement is definitely attributable to increased communication efficiency, especially

in the case of the two FDDI networks. On Ethernet, the difference is not so marked,

perhaps owing to the fact that collisions (as observed by network monitoring tools)

on the network continue to cause degradation. The other noteworthy aspect of this

table is that idle times are a very high proportion of the total communication time,

in some cases worse than those for CG and MG. It is believed that this behavior is

a result of the very small amounts of processing involved in IS, as compared to the

frequency, pattern, and volume of communication involved.
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Platform Time
(secs)

Comm.

Volume

16 SSI+ Enet 520" (717") 420 MB

8 RS6000 FDDI 412 (645) 1500 MB

Comm.

Time(secs)

385(502)

8 SGI Gswitch 228 (1070) 1500 MB 130 (516)

Cray Y-MP/h 29; i860/128:10 secs

Number

of msgs

3450

220 (395) 826
826

Idle

Time(secs)

266

112

34

* Reduced problem size (128 × 128 x 128)

Table 10: Kernel FT on enhanced PVM

6.2.4 Performance of Kernel FT

The results for FT are also illustrative in that they indicate the degree to which

performance can be improved by using faster communication schemes for very-high

message-volume applications. Execution time reductions are very significant for this

benchmark, especially in the case of the switched FDDI network, where a four-fold

improvement in both overall time and communication time may be observed. This

marked improvement in performance and high network utilization is attributable to

the fact that infrequent, large messages are the norm in this application. This effect

is highly pronounced in a switched network but not as remarkable in shared net-

works; understandable considering that the FT benchmark is synchronous in nature

- all processes perform approximately equal communication and then simultaneously

exchange large messages. Another effect of exchanging large messages at relatively

infrequent intervals is that idle times attributable to blocked receives and load im-

balances are not as severe in this application.

6.3 Communications Efficiency

From the foregoing results, it can be seen that the enhanced communication scheme

reduced communication times significantly, often achieving near-maximal commu-

nications efficiency. For example, in MG, the SSI+ system transfers 96MB in 85

seconds; an aggregate rate of 1.12MB/sec, or 95% of the theoretical maximum. The

Gigaswitch version of CG transfers 250MB in 46 secs for medium size messages, also

close to the best attainable in software. IS on Ethernet runs at 91% communication

efficiency. FT on FDDI gets over 60aggregate utilization (twice the software maxi-

mum for a point-point raw test) due to high offered load on a shared-access network.

However, there is still room for improvement, as discussed in the next section.

7 Discussion

In this paper, we have described porting exercises and performance measurements of

the NAS parallel benchmark kernels to distributed computing environments based on
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the PVM system. This work has shed light on a number of issues that influence high-

performance concurrent computing in networked environments. Many of these issues

deal with communications performance. By analyzing data transfer bottlenecks in the

release version of PVM and devising enhancements to the system to overcome these

drawbacks, we have obtained significantly better performance in all three network

platforms viz shared-Ethernet, shared-FDDI, and switched FDDI. In addition, these

experiments have also highlighted other factors that should be addressed in order to

obtain optimal performance, especially load balancing, and we intend to investigate

strategies to address them in future research.

7.1 NPB Codes on PVM

From the results presented in this paper, it may be seen that the clusters we have

used are generally an order of magnitude slower than the standard yardstick for CFD

codes, namely one processor of the Cray Y-MP. Eight processor clusters of RS6000's

over FDDI and SGrs over switched FDDI perform about 7 to 10 times slower than

a Cray Y-MP/1, with better ratios when communication volume and frequency is

lower. This is to be expected of course, but certain other aspects are also worthy of

note. First, it is apparent that for codes such as the NPB kernels that exchange large

volumes of data, fast networks are essential for good performance. However, shared-

FDDI networks perform as well as switched networks - provided the communication

volume is below a certain threshold, as indicated by the superior performance of

kernel MG in FDDI ring networks 4. When communication volume is large, as in

the case of FT, switched fiber networks appear to perform twice as well for the same

number of processors.

It should also be kept in mind that our implementations were naive, first-cut ef-

forts. One probable shortcoming of the PVM versions of the NPB codes is our use of

the Intel codes as our porting basis. In addition to uniform partitioning and work-

load allocation, the assumption of a specific interconnection network with a known,

dedicated bandwidth is bound to have had a negative effect on our performance re-

suits. We believe that a "first-principles" implementation of the NPB kernels for

PVM, with specific tailoring of the computational algorithms as well as partioning

and communication schemes to the cluster processors, the network, and the PVM

system, will achieve significantly better results.

Another fact to be considered when interpreting our results concerns the proces-

sors that were used in the experiments. The switched FDDI network delivers the best

communications performance, but unfortunately, we were only able to use medium

powered SGI processors on this system - it is interesting to speculate on the results

had we used Alpha-class workstations that are five times as powerful. Moreover, both

the RS6000 network and the SGI platform were subject to external influences and var-

ious configuration and operating parameters (e.g. memory, swap space, spontaneous

OS activity, nice policy, network service daemons etc.) over which we had no control

4Some of this better performance is of course due to the faster processors used
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These effects are manifested to some extent in the idle times reported in the previous

section; an externally loaded processor lags behind the others in a parallel compu-

tation, thus causing the other processors to accumulate "receive blocking" times. It

is suspected that performance improvements of the order of 20% or more over what

we have reported might have been possible, if these environments had been used in

an absolutely dedicated mode. In some sense however, such variability and lack of

control is a feature of the network computing methodology, not a drawback. There-

fore dynamic load balancing schemes and better partitioning methods are probably

required to exploit the full potential of network computing.

7.2 Future Work

As can be seen from the foregoing discussions, several issues still remain to be ad-

dressed with regard to network computing infrastructures to improve their efficacy

for high-performance computing. We intend to continue to work on the following

critical aspects as part of our research in heterogeneous concurrent computing.

Profiling and Visualization: Interpretation of the experiments presented in this

paper has been done primarily on the basis of the end-results. In order to gain

deeper insight into the behavior of the applications and software framework,

graphical visualization and profiling would be extremely valuable. We are cur-

rently working on enhancements to the PVM system to permit visualization of

network applications using the ParaGraph tool [19]. The major effort required

in this regard is necessitated by the asynchrony and drift of system clocks in

typical cluster environments that are manifested as causality violations in pro-

gram trace files; we are developing an algorithm to adjust for these "tachyons"

in a manner that preserves the time-sequence of events and only minimally

alters time scales.

Partitioning and Workload Allocation: High and dynamic variability in the

amount of resources available in different parts of networked environments (dif-

ferent processors, network connections, software) strongly suggest that alter-

native partitioning and load balancing schemes are a pre-requisite to optimal

performance. We are beginning the design of an object-based methodology

whereby smaller granularity workload units may be generated and dynami-

cally allocated according to instantaneous conditions that prevail in a cluster

or heterogeneous network. We intend to manifest these objects as threads or

light-weight processes whereby multiple threads would be sited within a single

process; this strategy is expected to achieve better latency hiding as well as

greater overlap of computation and communication, in addition to more adapt-
able workload allocation.

Alternative Protocol Architectures: In the present implementation of PVM,

standard network protocols (i.e. TCP/UDP/IP)are used; these are thought

to be overly general and in many respects, unsuitable for parallel distributed
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computing. We are evolving an alternative protocol scheme where PVM and

application programs directly access the data link interface of high-speed local

networks, thus bypassing much of the protocol processing and resultant over-

heads. In a preliminary implementation of this scheme, we have obtained laten-

cies that are less than one-half of the minimal obtainable while using TCP/IP,

and throughput improvements of the order of 35%. We intend to develop this

protocol suite [18] as a library and modify the PVM system to operate over this

suite when possible.
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